Clearance of serum HBsAg by nucleic acid polymers suggests a critical role for HBsAg loss in establishing functional control of HBV and HDV infection

Andrew Vaillant
Chief Scientific Officer

replicor

Satellite Symposium
2017 International HBV meeting
CLASSIC TARGETS FOR HBV:
Virion production (capsids and HBV-RT) and cccDNA

- Infected hepatocyte
- Nucleus
 - integrated HBsAg
 - cccDNA
 - Replenishment of cccDNA
- Capsids
- HBeAg
- Virions + filaments

Particle production in HBV
THE HBsAg PROBLEM: almost all HBsAg is derived from subviral particles

HBsAg is an immunosuppressor:

• Masks anti-HBs response
• Blocks signalling mechanisms in innate and adaptive immunity
• Blocks the effect of immunotherapies

• HBsAg clearance is critical to achieving functional cure

Al-Mahtab et al., 2016 PLOS One 11: e0156667
M. Bazinet et al., 2016 AASLD Abstract 1848.
Op den Brouw et al., 2009. Immunology, 126: 280-289
Shi et al. 2012 PLOS One 7: e44900
Woltman et al. 2011 PLOS One 6: e15324
Wu et al., 2009. Hepatology, 49: 1132-11
Xu et al., 2009. Molecular immunology, 46: 2640-2646
HBsAg is the most abundant circulating viral protein in HBV infection

SVPs are produced from hepatocytes:

- with active HBV replication
- and

HBV DNA integration

(even in the absence of active cccDNA)

Direct targeting of HBsAg synthesis or SVP assembly / secretion will be critical to achieve high rates of functional control that persists after the end of therapy.

What is the contribution by integrated HBV DNA to SVP production?
Gauging the HBV DNA integration problem

Serum HBV RNA and HBcrAg are novel markers reflecting the activity of intrahepatic cccDNA

Analysis of HBsAg, HBV RNA and HBcrAg during TDF + pegIFN in the REP 401 protocol [NCT02565719]

- During TDF and peg-IFN:
 - HBV RNA TND in 14/20 patients
 - HBcrAg < LLOD in 15/20 patients
 - serum HBsAg reductions > 1 log in 3/20 patients

- weak HBsAg response even in patients with continuous declines from high pre-treatment HBV RNA and HBcrAg (green, pink and orange lines)

Bulk of HBsAg in HBeAg negative patients may be derived from integration

Chen et al., 2017. Sci. Rep. 7: 713
Tu et al., 2017. Viruses 9: 75
Wang et al., 2016. J Hepatol. 65:700-710.
Bazinet M et al., 2017. J Hepatol. 66:S256
Restoring functional control of HBV infection

How much HBsAg reduction is required for clinical benefit?

- 1 log HBsAg reduction is common with pegIFN and does not predict off-treatment functional control
- Early multilog reduction and HBsAg loss are rare but predict functional control

Can the clinical database from NAP trials provide clues?
Nucleic Acid Polymers (NAPs)

NAPs block subviral particle release

Efficient HBsAg clearance from the blood

- Critical features of NAPs
 - Target the assembly and or secretion of SVPs
 - Host factors are targeted
 - Intracellular HBsAg not increased
 - Secretion of virions and HBeAg not affected
 - Establish functional control of hepadnaviral infection *in vivo*
 - Elimination of serum surface antigen
 - Liver replication decreases during NAP monotherapy *in vivo*
 - Clearance of surface and core antigens and control of viral replication in the liver (cccDNA) persists after NAP treatment withdrawal *in vivo*.
 - High potent, validated clinical effect
 - Up to 7 log reduction of serum HBsAg
 - HBsAg ≤ 0.01 IU/mL achieved in majority of patients during therapy
 - Effect is not derived from immunostimulation, assay interference, or evolution of immune escape HBsAg.

Guillot et al., 2017 PLOS One. 12:e0179697
Blanchet et al. 2017 J. Hepatol. 66:S257
Usman et al. 2017 J. Hepatol. 66:S257
Real et al., 2017 Sci Reports. 7:43838
Roehl et al., 2017 Mol Ther Nuc. Acids. 8:1-12
Vaillant, 2016. Antiviral Res. 133: 32-40
Quinet et al., 2016. J. Hepatol. 2016;64:S385
Al-Mahtab et al., 2016 PLOS One 11: e0156667
Noordeen et al., 2015 PLOS One 10: e0140909
HBsAg clearance in HBeAg+ CHB

REP 101 and 102 protocols [NCT02646163 / NCT02646189]
20 HBeAg+ patients with documented chronic infection

NAP monotherapy (REP 2055 or REP 2139):
- Serum HBsAg > 1 log reduction in 18 patients, 2-7 log reduction in 15 patients
 - HBsAg < 1 IU/mL in 10 patients
 - HBsAg, < 0.01 IU/ml in 8 patients
- Seroconversion of HBeAg in 14 patients
- Appearance of free anti-HBs > 10mIU/mL (typically 10-50mIU/mL) in 10 patients
- Multilog (2-12) log reduction of HBV DNA in 15 patients
- With REP 2055, strong therapeutic transaminase flares and functional control* of infection only occurred in patients achieving HBsAg <1IU/mL

Immunotherapy (12 weeks thymosin α1 or pegIFNα2a) was added to REP 2139:
- Restricted to 9 patients with HBsAg <0.01 -180.44 IU/mL at start of immunotherapy
 (2.45 – 7.09 log reduction from baseline)
- HBsAg became <0.01-0.03 IU/ml in 9/9 patients
- Rapid increase in production of anti-HBs (242-1302 IU/ml) in 9/9 patients
- HBV DNA became LLOQ-2400 copies/mL in 9/9 patients
- Functional control* established in 8/9 patients after therapy (4/9 persisting to 2 years)

Al-Mahtab et al., 2016 PLOS One 11: e0156667
HBsAg clearance in HBV / HDV co-infection

REP 301 protocol [NCT02233075], 12 HBeAg- patients with confirmed chronic HDV coinfection

5/12 patients with HBsAg control at 24W – 1 year follow-up.

An additional 2 patients have established a new HBsAg baseline

LLOQ = lower limit of quantification, TND = target not detected (0.00 IU/mL), EOT = end of treatment, * not enrolled in REP 301-LTF

HBsAg clearance in HBV / HDV co-infection

Maintenance of anti-HBs titers at 1 year follow-up is correlated with serum HBsAg < 1 IU / at the start of peg-INF therapy
HBsAg clearance in HBV / HDV co-infection

HBsAg < 1IU/mL prior to pegIFN

Transaminase elevations are asymptomatic
Serum transaminases normalize in 8/12 patients during follow-up

HBsAg > 1IU/mL prior to pegIFN
HBsAg clearance in HBV / HDV co-infection

Undetectable HDV RNA observed at 24 weeks follow-up in 7/12 patients is stable at 1 year follow-up

EOT = end of treatment, * early entry into REP 301 follow-up - not enrolled in REP 301-LTF, TND = target not detected

NAPs target S and L forms of HDAg and may inhibit ribozyme activity and RNP assembly

Shamur et al. HBV Int 2017 meeting poster P-145
HBsAg clearance in HBeAg- CHB

REP 401 protocol [NCT02565719]

20 HBeAg+ patients (treatment naïve)

(REP 2139 results from EASL 2017)
HBsAg clearance in HBeAg- CHB

TDF effect unaltered in triple combination with pegIFN and NAPs

LLOQ = lower limit of quantification (10 IU / ml)
TND = HBV DNA target not detected
HBsAg clearance in HBeAg- CHB

HBsAg response > 4 log: 9/10 2/7
HBsAg loss (≤0.01 IU/mL): 8/10 0/7

LLOQ = lower limit of quantification (0.05 IU / mL)
TND = HBsAg not detected (0.00 IU / mL)
HBsAg clearance in HBeAg- CHB

Peg-IFN mediated elevation in serum anti-HBs restricted to patients with HBsAg < 1IU/mL

Prot. Imm. = threshold for protective immunity (10 mIU / mL)
absent = no significant anti-HBs present (≤ 0.1 mIU / mL)
HBsAg clearance in HBeAg- CHB

Peg-IFN mediated transaminase elevations more frequent and stronger in patients with HBsAg < 1IU/mL
Liver function normal during transaminase flares
Summary

SVP-derived HBsAg inhibits the immune response to HBV infection
• maintains chronic HBV infection
• blocks activity of immunotherapeutic agents

SVPs may be derived mainly from integrated HBV DNA in HBeAg negative patients

Achieving HBsAg <1IU/mL is reliably achieved with REP 2139
• SVP assembly/secretion derived from cccDNA or integrated HBV DNA is inhibited

HBsAg clearance to levels <1IU/mL may be required for clinical benefit

• With HBsAg as low as 6 IU/mL, response to immunotherapy is absent

• With HBsAg <1IU/mL, response to immunotherapy is universally potentiated
 • Increased anti-HBs production
 • Strong, therapeutic transaminase flares
 • *Increased incidence of functional control persisting after the end of therapy*