Updated follow-up analysis in the REP 401 protocol: Treatment of HBeAg negative chronic HBV infection with REP 2139 or REP 2165, tenofovir disoproxil fumarate and pegylated interferon α-2a

Dr. Andrew Vaillant
CSO, Replicor Inc.
Human pieces of the document: The HBV-derived checkpoint inhibitor: subviral particles

Almost all HBsAg is derived from subviral particles which are mostly derived from integrated HBV DNA not affected by targeting viral replication.

Subviral particles are the primary immunosuppressive agent:
- Mask the anti-HBs response
- Block signalling mechanisms required for innate and adaptive immune function
- Exhaust B- and T-cell responses
- Inhibit the activity of immunotherapy
  - cytokine or TLR-based
  - therapeutic vaccines

References:
- Rydell et al., Virol. 2017; 509: 67-70
- Al-Mahtab et al., 2016 PLOS One 11: e0156667
- Yang et al., Int. Immunopharmacol. 2016; 38: 291-297
- Kondo et al., ISRN Gastro. 2013; 2013:935295

HBsAg clearance is crucial to restoring functional control of HBV infection.
REP 2139 blocks subviral particle assembly and release from cccDNA or integrated HBV DNA

Inhibition of SVP release is associated with reduction in intracellular HBsAg

Efficient HBsAg clearance from the blood

REP 2139 only prevents replenishment of circulating HBsAg

HBsAg clearance is dependent on the clearance of SVP by host immune function.
REP 2139 effects on systemic HBsAg burden

Healthy individual

Chronic HBV infection
Abundant circulating HBsAg
Local intrahepatic HBsAg likely elevated

Inhibition of HBsAg release likely leads to rapid equilibration of intrahepatic HBsAg and circulating HBsAg
Potential for early reactivation of intrahepatic immune function

Circulating HBsAg is cleared by host immune response leading to further reduction of intrahepatic HBsAg
Potential for restoration of functional control of HBV infection

Treatment naive

Early in REP 2139 exposure

Continued REP 2139 exposure
## REP 2139 effects in monotherapy

<table>
<thead>
<tr>
<th>Antiviral response</th>
<th>In vivo (DHBV infected Pekin ducks)</th>
<th>HBeAg positive chronic HBV infection</th>
<th>HBeAg negative chronic HBV/HDV co-infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>HBsAg reduction to &lt; LLOQ HBV DNA reduction to &lt; LLOQ (decoupled from HBsAg clearance)</td>
<td>HBsAg reduction to &lt; 1 IU/mL Anti-HBs unmasking HBeAg seroconversion HBV DNA and RNA reduction (decoupled from HBsAg clearance)</td>
<td>HBsAg reduction to &lt; 1 IU/mL Anti-HBs unmasking HDV RNA clearance (target not detected)</td>
</tr>
<tr>
<td>Liver</td>
<td>Clearance of HBsAg and HBcAg Transcriptional inactivation of cccDNA 2-3 log10 reduction in cccDNA</td>
<td>Strong, self resolving, asymptomatic transaminase flares (when HBsAg becomes &lt; 1 IU/mL)</td>
<td>Weak transaminase flares (strong following pegIFN add-on when HBsAg &lt; 1 IU/mL)</td>
</tr>
<tr>
<td>Functional control after removal of therapy (HBsAg and HBV DNA)</td>
<td>55-66% (blood and liver)</td>
<td>25% 5 years of follow-up</td>
<td>36% (HBsAg)* 55% (HBV DNA)* 63% (HDV RNA)* (2 years of follow-up)</td>
</tr>
</tbody>
</table>

*suboptimal combination regimen (15 weeks REP 2139-Ca + pegIFN)

### Decoupling of HBsAg and HBV DNA

Decoupling of HBsAg and HBV DNA declines a result of selective targeting of SVP assembly / release

HBsAg clearance is accompanied multiple positive effects on immune response to HBV infection

Immunological damage present in chronic infection likely prevent many patients from restoring immune function with HBsAg clearance alone

Potent and distinct antiviral mechanism is active against HDV

---

Noordeen et al., PloS One 2015
Quinet et al., Hepatol. 2018; 67: 2127-2140
Janssen et al., J. Hepatol. 2015;62: S250
Al-Mahtab et al., PLOS One 2016; 11: e0156667
Building an effective combination therapy

Functional control of chronic HBV infection can only be achieved by restoring immune control

Adding immunotherapy is essential to assist in recovering immunological damage caused by chronic HBsAg exposure

- **synergistic activation requires HBsAg reduction to < 1 IU/mL**
  - Enhanced rates of HBsAg loss
  - Rapid elevations in anti-HBs (to > 10,000 mIU/mL)
  - Strong therapeutic transaminase flares now occur in HBeAg negative patients
  - Increased rates of functional control persisting off therapy (HBV and HDV)
- **Occurs with cytokine-based (pegIFN α2a) or TLR-based (thymosin α1) immunotherapies**

A direct acting antiviral agent may further improve outcomes → tenofovir pro-drugs are currently the best option:

- Efficiently inhibits the HBV RT with minimal resistance→ reduces cccDNA levels in the liver
- **Stimulates the production of antiviral cytokines (TNFα and INFγ and INFλ3)**
- Improved liver partitioning of next generation tenofovir prodrugs (i.e. TXL) may further enhance these effects

Al-Mahtab et al., 2016 PLOS One 11: e0156667
Cathcart et al., J. Hepatol. 2018;66: S476
Zidek et al., Nucleosides Nucleotides. 1999; 18: 959-961
Zidek et al., Eur. J. Pharmacol. 2003; 475: 149-159
Zidek et al., Eur. J. Pharmacol. 2007; 574: 77-84
Kostecká et al., Int. Immunopharmacol. 2012; 12: 342-349
Murata et al., Gut. 2018; 76: 362-371
Putting the pieces together: the REP 401 study

NCT02565719
Treatment naive chronic HBeAg negative infection, HBsAg > 1000 IU/mL, HBV DNA > 10,000 IU /mL
Advanced fibrosis allowed but cirrhosis excluded

24 weeks 24 weeks 48 weeks
Adaptive comparator group (20 patients)
TDF TDF + pegIFN NAPs + TDF + pegIFN 48 week follow-up
24 weeks 48 weeks
Experimental group (20 patients)
TDF NAPs + TDF + pegIFN 48 week follow-up

NAP drug products used (1:1 ratio):

250mg REP 2139-Mg qW IV
lead candidate
250mg REP 2165-Mg qW IV
suitable for high frequency dosing to rescue the small proportion patients with weak HBsAg response (< 1 log reduction)

These are SC formulations administered via IV infusion
## Safety in the REP 401 study

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Common Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDF monotherapy</td>
<td>none</td>
</tr>
</tbody>
</table>
| **TDF + pegIFN**                   | • asymptomatic thrombocytopenia and leucopenia (easily managed with pegIFN dose reduction and or eltrombopag)  
• typical symptoms associated with pegIFN (fever, aches, joint pain)  
1 patient withdrew due to pegIFN associated depression |
| **TDF + pegIFN + NAPs** (REP 2139-Mg or REP 2165-Mg) | • no change in platelet / WBC dynamics or pro-inflammatory symptoms (vs TDF + pegIFN)  
• NAP IV administration now asymptomatic over 48 weeks  
**ready for transition to SC administration** (normal mode of administration used for this drug class) |
Antiviral Response in the REP 401 study

**HBsAg**

REP 2139-Mg = REP 2165-Mg
4/40 non-responders (HBsAg reduction < 1 log_{10})
8/40 HBsAg > 1 log_{10} reduction but < 1 IU/mL
28/40 HBsAg < 1 IU/mL
24/40 HBsAg loss (0.00 – 0.05 IU/mL)

**Anti-HBs**

Anti-HBs dramatically increased with the introduction of pegIFN (but only in patients with HBsAg declines to < 1 IU/mL)

**HBVDNA**

TDF-induced HBV DNA declines unaffected during therapy
Therapeutic transaminase flares in the REP 401 study

ALT flares observed during immunotherapy
(all otherwise asymptomatic)
(increased intensity in patients with HBsAg declines to < 1 IU/mL)

Flares present but attenuated when NAPs introduced following 24 weeks of pegIFN
Likely due to loss of CD8+ T-cells during pegIFN exposure

ALT / AST declines in all patients during follow-up and normalizes in patients with persistent functional control
30 patients have reached 24 weeks of follow-up:

**26/30 (87%)** have functional repression (HBV DNA $< 1000$ IU/mL)
- 20/26 with HBsAg $< 10$ IU/mL
- 24/26 with normal liver function
- **12 patients now at 48 weeks of follow-up**

**21/30 (70%)** have functional remission (HBV DNA $< \text{LLOQ}$)
- 18/21 with HBV DNA target not detected
- 14/21 with HBsAg target not detected (0.00 IU/mL)
- **9 patients now at 48 weeks of follow-up**
48 weeks of REP 2139-Mg/REP 2165-Mg, TDF and pegIFN are well tolerated
  • pegIFN side effects are mild, easily managed and not altered by NAP exposure
  • pegIFN is much better tolerated in combination setting than when used with ribavirin in HCV infection

Leads to a high rate (90%) of $> 1 \log_{10}$ HBsAg reduction within the first 24 weeks of NAP exposure
  • 70% of patients experience HBsAg reduction to $< 1$ IU/mL or target not detected
    • Rapid and profound increases in anti-HBs
    • Strong, self revolving and otherwise asymptomatic (therapeutic) transaminase flares

High rates of functional control are present at 24 weeks follow-up
  • 87% functional repression (HBV DNA $< 1000$ IU/mL)
  • 70% functional remission (HBV DNA $< \text{LLOQ}$)
  • Normalization of liver function

Next steps:
  • REP 103 / A5382 trial in the US (in collaboration with ACTG): REP 2139-Mg + pegIFN in NUC supressed patients
  • Transition REP 2139-Mg to SC administration
  • REP 2139-Mg + TDF + pegIFN in HBV / HDV co-infection
  • Compare other immunotherapies to pegIFN in this combination therapy setting
## Acknowledgments

### A collaborative effort!

<table>
<thead>
<tr>
<th>Clinical evaluations:</th>
<th>Montreal, Canada</th>
<th>Dhaka, Bangladesh</th>
<th>Chișinău, Moldova</th>
<th>US (ACTG), USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michel Bazinet</td>
<td>Mamun Al-Mahtab</td>
<td>Victor Pântea</td>
<td>Liviu Iarovoi</td>
<td>Marion Peters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valentin Cebotarescu</td>
<td>Valentina Smesnoi</td>
<td>Mark Sulkowski</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lilia Cojuhari</td>
<td>Tatiana Musteata</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pavlina Jimbei</td>
<td>Iurie Moscalu</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gheorghe Placinta</td>
<td>Alina Jucov</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical virology and assay validation:</th>
<th>Essen, Germany</th>
<th>Munich, Germany</th>
<th>Los Angeles, USA</th>
<th>Bobigny, France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adalbert Krawczyk</td>
<td>Michael Roggendorf</td>
<td>Hadi Karimzadeh</td>
<td>Peter Schmid</td>
<td>Emmanuel Gordien</td>
</tr>
<tr>
<td></td>
<td>Hrvoje Mijočević</td>
<td></td>
<td>Jeffrey Albrecht</td>
<td>Frédéric Le Gal</td>
</tr>
<tr>
<td></td>
<td>Zainab Usman</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-clinical evaluations:</th>
<th>Adelaide, Australia</th>
<th>Lyon, France</th>
<th>Essen, Germany</th>
<th>Logan, Utah, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allison Jilbert</td>
<td>Lucyna Cova</td>
<td>Michael Roggendorf</td>
<td>Michael Schöneweis</td>
<td>John Morrey</td>
</tr>
<tr>
<td>Faseeha Noordeen</td>
<td>Celia Brikh</td>
<td>Hadi Karimzadeh</td>
<td>Katrin Schöneweis</td>
<td>Neil Motter</td>
</tr>
<tr>
<td>Catherine Scougall</td>
<td>Jonathan Quinet</td>
<td></td>
<td>Mengji Lu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catherine Jamard</td>
<td></td>
<td>Pia Roppert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dieter Glebe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanistic studies:</th>
<th>Montreal, Canada</th>
<th>Paris, France</th>
<th>Essen, Germany</th>
<th>Ness Ziona, Israel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthieu Blanchet</td>
<td>Camille Sureau</td>
<td>Ruth Broering</td>
<td>Raphael Mayer</td>
<td></td>
</tr>
<tr>
<td>Patrick Labonté</td>
<td>Frauke Beilstein</td>
<td>Catherine Real</td>
<td>Merav Merom Shamur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matthieu Lemasson</td>
<td>Joerg Schlaak</td>
<td>Ronny Peri-Naor</td>
<td></td>
</tr>
</tbody>
</table>

June 15, 2018