Interim follow-up analysis in the REP 401 protocol: Functional control of HBeAg negative chronic HBV infection persists after withdrawal of combined therapy with REP 2139 or REP 2165, tenofovir disoproxil fumarate and pegylated interferon α -2a M. Bazinet¹, V. Pântea², G. Placinta², I. Moscalu³, V. Cebotarescu², L. Cojuhari², P. Jimbei⁴, L. Iarovoi², V. Smesnoi⁴, T. Musteata⁴, A. Jucov^{2,3}, A. Krawczyk⁵ A. Vaillant¹

MEETING®

INTRODUCTION

HBV subviral particles (SVPs) constitute more than 99.99% of circulating HBsAg. SVPs are derived from cccDNA and from integrated HBV DNA and can thus be produced in cccDNA-independent fashion. The nucleic acid polymer (NAP) REP 2139 blocks the assembly and release of HBV particles (SVPs) derived from cccDNA and integrated HBV DNA, allowing the efficient clearance of serum HBsAg. This clearance facilitates the restoration of functional control of HBV infection by immunotherapy in HBV and HBV / HDV-co-infection^{1,2}. The REP 401 protocol (NCT02565719) is a randomized, controlled trial assessing the safety and efficacy of REP 2139 and a REP 2139 derivative with improved tissue clearance (REP 2165) in combination with tenofovir disoproxil fumarate (TDF) and pegylated interferon alpha-2a (peg-IFN) in patients with chronic HBeAg negative HBV infection.

MATERIAL & METHODS

Twenty four weeks of lead-in TDF (300mg PO qD) was followed by randomization (1:1) into experimental and control groups (Table 1). The experimental group received 48 weeks of TDF (300mg PO qD), peg-IFN (180ug SC qW) and REP 2139-Mg or REP 2165-Mg (1:1, 250 mg IV infusion qW) (Table 2). The control group was to receive 48 weeks of TDF + peg-IFN but all patients have crossed over to 48 weeks of experimental therapy in the absence of a 3 log drop in HBsAg after 24 weeks of peg-IFN (see figure below). Viremia is monitored on the Abbott Architect and Realtime platforms.

Pre-treatment demographics

Para	meter	Adaptive comparator control (TDF + peg-IFN)	Experimental (TDF + peg-IFN + NAPs)		
Age (avera	ge / median)	36.9 / 36	38.6 / 39.5		
S	Sex	27M / 3F	26M / 4F		
	А	1	2		
пьу genotype	D	19	18		
	FO-F1	12	10		
Metavir score	F2	3	6		
(based on Fibroscan)	F2-F3	0	3		
,	F3-F4	3	1		
Virologic baseline	HBV DNA (IU/mL)	3.6x10 ⁷ / 8.7x10 ⁴	4.8x10 ⁶ / 4.8x10 ⁴		
(average /	HBsAg (IU/mL	14775.7 / 9302.5	9018.1 / 8743		
median)	Anti-HBs (mIU/mL)	0.78/0.1	2.778 / 0.1		
ALT (U/L, ave	erage / median)	71.65 / 49	91.95 / 56.5		

REP 2139 versus REP 2165

NAP	Sequence 5' - 3'	Stability in human plasma 7 days @ 37°C (% of standard)				
REP 2139	AC	93	86			
REP 2165	AC	89	36			

A = 2' O-methyl ribose modification in REP 2139 is 2'OH in REP 2165, allowing greater susceptibility to endonuclease attack and degradation.

DISCLOSURES

MB and AV are employees and shareholders in Replicor Inc. All other authors have no conflicts to declare.

1. Replicor Inc. Montreal, Canada

2. Department of Infectious Diseases, Nicolae Testemitanu State University of Medicine and Pharmacy, Chișinău, Republic of Moldova 3. ARENSIA Exploratory Medicine, Republican Clinical Hospital, Chișinău, Republic of Moldova 4. Toma Ciorbă Infectious Clinical Hospital, Chișinău, Republic of Moldova. 5. Universitätsklinikum Essen, Institute for Virology, Essen, Germany.

INTERIM RESULTS (TREATMENT)

Contact: availlant@replicor.com

2. Bazinet et al., Lancet Gastroenterol Hepatol. 2017 epub Sept 27, 2017

REP 2139 experimental group (Lead clinical candidate)						р	REP 2165 experimental group								
Patient	Gonotyn	Paramotor	Rasolino	FOT		E\A/12	E\\/2/	Patient	Conotype	Paramotor	Bacolino	FOT		E\A/1 2	
01-003	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	7809 0.61 116900 32 28	TND 6147 48 115 130	TND 6287 10 47 53	TND 2631 TND 33 35	TND 520 TND 26 30	01-004	D3	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	9032 <0.1 3020 59 38	238 <0.1 1 227 172	240 <0.1 10 138 82	166 <0.1 26320 41 54	
02-005	A2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	31184 <0.1 2641 39 29	TND 920 30 304 292	TND 25419 <lloq 247 179</lloq 	TND 6551 <lloq 80 79</lloq 	TND 590 <lloq 45 45</lloq 	01-007	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	9418 <0.1 13300 41 24	TND 331 TND 82 62	TND 345 <lloq 38 35</lloq 	TND 179 <lloq 22 25</lloq 	<lloq 44 TND 17 19</lloq
02-015	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	10921 <0.1 43650 54 30	3510 0.62 15 50 68	4256 0.14 74 19 27	4807 2.84 521900 125 79	4520 4.72 175 19 27	01-010	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	14498 <0.1 14190000 276 136	1388 <0.1 10 39 47	1372 <0.1 81 20 27	1865 <0.1 1612000 32 31	9852 <0.1 6102000 176 70
02-024	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	1368 0.64 8312 88 38	TND 1.4 TND 58 39	TND 1.12 TND 25 32	TND 9.14 <lloq 34 28</lloq 	TND 11 <lloq 23 28</lloq 	01-042	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	3049 <0.1 53080 44 27	TND 94 TND 229 222	TND 69 TND 90 72	TND 20 TND 66 48	TND 19 TND 43 38
01-046	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	8514 <0.1 70600000 112 66	TND 15529 TND 388 315	TND 14037 TND 244 154	TND 3404 TND 37 48	<lloq* 358* TND* 27 37</lloq* 	02-049	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	1147 <0.1 164900 59 55	TND 547 <lloq 28 38</lloq 	TND 221 TND 17 31	TND 172 TND 14 26	
01-067	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	2716 <0.1 194000 95 44	0.31 4.04 TND 45 37	*updated 0.12 1.58 TND 39 29	0.3 0.54 14 34 26	ble for e-poster	01-008	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	10736 35 236300 137 74	57.9 1.5 10 54 49	87.1 1.22 15 40 38	1013 1.94 51910 46 44	
01-026	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	8766 <0.1 7533000 197 117	TND 25 TND 124 103	TND 26 TND 25 30	TND 16 TND 24 31		02-054	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	18422 <0.1 2130 24 24 24	TND 36628 TND 62 61	TND 43489 TND 27 36	TND 31150 TND 18 30	
02-019	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	9721 <0.1 4916 41 31	TND 223055 17 105 63	TND 286756 12 55 37	TND 177925 TND 36 30		02-058	A2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	8720 <0.1 33000 32 46	TND 13582 TND 83 77	TND 16366 TND 45 56		
01-077	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	1334 5.81 2183000 263 78	TND 38 TND 70 61	TND 30 TND 34 33	24 25		01-074	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	4835 <0.1 14550 20 24	631 <0.1 10 73 66	701 <0.1 80 28 34		
03-023	D1	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	9595 12 1132000 175 85	(3006) (0.79) (TND) (39) (34)				03-020	D2	HBsAg (IU/mL) anti-HBs (mIU/mL) HBV DNA (IU/ mL) ALT (U/L) AST (U/L)	8577 <0.1 38530 51 41	(TND) (148) (26) (155) (100)			
HBSAg reduction to <110/mL during treatment >110g ₁₀ HBSAg reduction but >110/mL Functional contr								control	after rei	moval of	therapy				

TND = target not detected (HBsAg <0.01IU/mL, HBV DNA no target detected), LLOQ = lower limit of quantification (HBsAg <0.05IU/mL, HBV DNA <10IU/mL) Numbers in parentheses indicate the latest available on-treatment results for patients who have not completed treatment.

Persistence of functional control after therapy

Available baseline, end of treatment and follow-up data for HBsAg, anti-HBs, HBV DNA, ALT and AST are provided for all patients in the REP 2139 and REP 2165 experimental groups. Persistence of functional control of HBV infection and normalization of ALT and AST (ULN = 50 U/L) are present in 8/10 patients in the REP 2139 group and 5/10 patients in the REP 2165 group. Three patients in the REP 2165 group (in orange) experienced >1 log₁₀ reductions in serum HBsAg but remained >1 IU/mL the end of therapy and experienced viral rebound after withdrawal of therapy. Recovery of platelet and WBC counts are observed at 12 weeks of follow-up in all experimental patients (inset right). Dashed horizontal lines indicate normal ranges.

replicor

Clinic Toma Ciorbă

INTERIM RESULTS (FOLLOW-UP)

CONCLUSIONS

REP 2139 and REP 2165 are well tolerated in combination with TDF and pegIFN.

Clearance of HBsAg uniquely occurs with NAP exposure

In the presence of pegIFN, HBsAg clearance is accompanied by dramatic increases in circulating anti-HBs and the increased prevalence and magnitude of otherwise asymptomatic transaminase flares.

• Functional control of infection is persisting after therapy in all experimental patients achieving HBsAg <1 IU/mL during treatment:

> 8/10 with REP 2139 5/10 with REP 2165

All patients with functional control of infection persisting after therapy have also experienced normalization of liver enzymes.