Establishing functional cure of chronic HBV infection with nucleic acid polymers: Final results from the REP 401 study

M. Bazinet¹, V. Panteâ², G. Placinta², I. Moscalu³, V. Cebotarescu², L. Cojuhari², P. Jimbei⁴, L. Iarovoi², V. Smesnoi⁴, T. Musteata⁴, A. Jucov^{2,3}, A. Krawczyk^{5,6}, U. Dittmer⁵, A. Vaillant¹

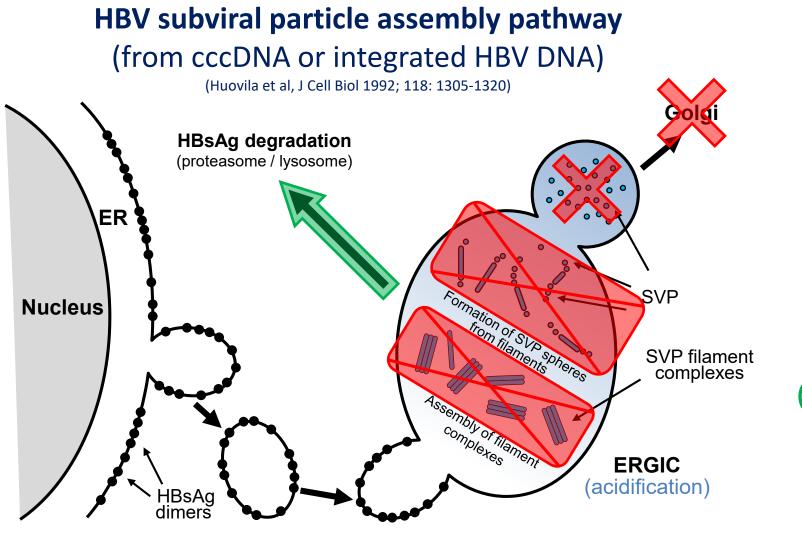
Replicor Inc., Montreal, Canada
Nicolae Testemiţanu State University of Medicine and Pharmacy, Chişinău, Moldova
ARENSIA Exploratory Medicine Chişinău, Moldova
Toma Ciorbă Infectious Clinical Hospital, Chişinău, Moldova
Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

Breaking the chronicity of chronic HBV infection

Chronic HBV infection still persists in up to 350 million people. WHY?

HBsAg likely prevents the establishment of immune control:

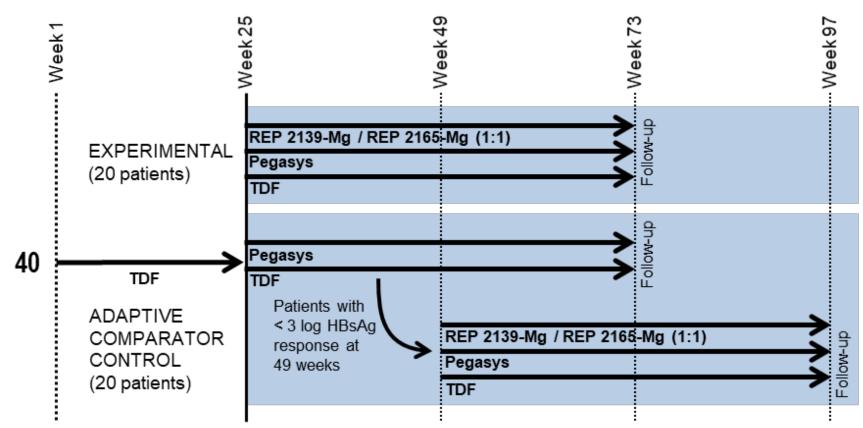
HBsAg is the most abundant circulating viral antigen


> 99.99% derived from subviral particles
 Assembled and secreted independently from virions
 Assembled and secreted in part independently of cccDNA (from integrated HBV DNA)

Cannot be targeted by direct acting antivirals

HBsAg is an important immune checkpoint inhibitor in chronic HBV infection Inhibits innate and adaptive immunity Exhausts the HBsAg specific B- and T-cell responses

Mechanism of action of REP 2139 in HBV


REP 2139 enters the ERGIC and inhibits SVP morphogenesis (host target currently unknown)

Intracellular degradation of HBsAg is enhanced

Inhibition of HBsAg secretion (from cccDNA or integrated HBV DNA) is accompanied by declines in intracellular HBsAg

Blanchet et al., Antiviral Res 2019; 164: 97-105

REP 401 Study Clearing HBsAg to improve immunological recovery

Initial follow up scheduled 4, 12, 24 and 48 weeks after all treatment is stopped

TDF 300mg PO qD

Pegasys 180ug SC qW

NAPs: REP 2139-Mg or REP 2165-Mg 250mg IV qW

REP 2165 = REP 2139 variant with improved tissue clearance

Roehl et al., Mol Ther Nuc Acids 2017; 8: 1-12

TDF + pegIFN + REP 2139-Mg or REP 2165-Mg

TDF:Block production of infectious virus and replenishment of cccDNAControl of serum HBV DNA by TDF is unaffected by addition of pegIFN or NAPs

TDF + pegIFN: Addition of immunotherapy to restore immune control HBsAg declines < 0.5 log₁₀ from baseline in 17/20 patients after 24 weeks – further treatment futile

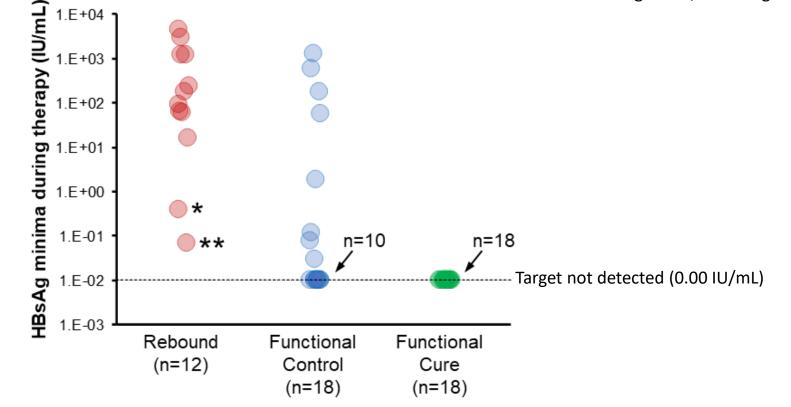
TDF + pegIFN + NAPs:Lower intrahepatic HBsAg and block replenishment of serum HBsAg
REP 2139-Mg = REP 2165-Mg over 48 weeks of triple combination therapy
Rapid HBsAg reduction (> 5 log₁₀ reduction to 0.00 IU/mL [TND] as quickly as 10 weeks)
90% HBsAg response (> 1 log₁₀ from baseline), 60% TND (within 24 weeks)
60% HBsAg seroconversion (up to 233,055 mIU/mL)

Transaminase flares (> 3X ULN) occurred in 95% of participants Concomitant with HBsAg declines following addition of NAPs Not accompanied by alteration in liver function or any signs of hepatic decompensation

(consistent with overall well tolerated and positive impact of transaminase flares in chronic HBV)

Final REP 401 outcome summary

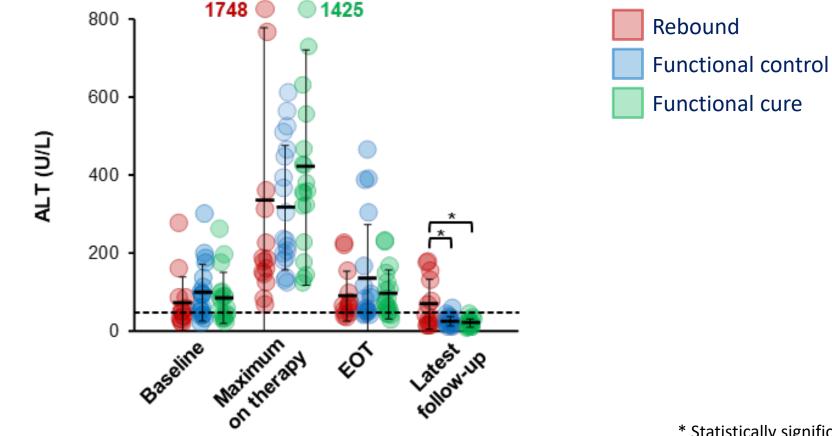
(updated June 20, 2019)


Complet	ed treatment and ≥ 24 weeks of follow-up	36 (32 completed 48 weeks of follow-up)	
Clinical	Normal ALT	89%	
response	Normal liver median stiffness	56%	
	< 1000 IU/mL	72%	
HBsAg	< 1 IU/ml	50%	
response	≤ LLOQ (0.05 IU/mL)	42%	
	Seroconversion	53%	
HBV DNA	≤ 2000 IU/mL	78%	
response	Target not detected (TND)	47%	
Virologic response	Functional control (HBV DNA ≤ 2000 IU/mL, normal ALT)	39%	
	Functional cure (HBsAg < LLOQ, HBV DNA TND, normal ALT)	39%	
	Clinical benefit, no therapy required (Low risk of progression, reduced risk of HCC)	78 %	

Meta analysis of HBeAg negative patients completing therapy in the REP 301 and REP 401 studies

* HBsAg < 1 IU/ml during last 4 weeks of therapy

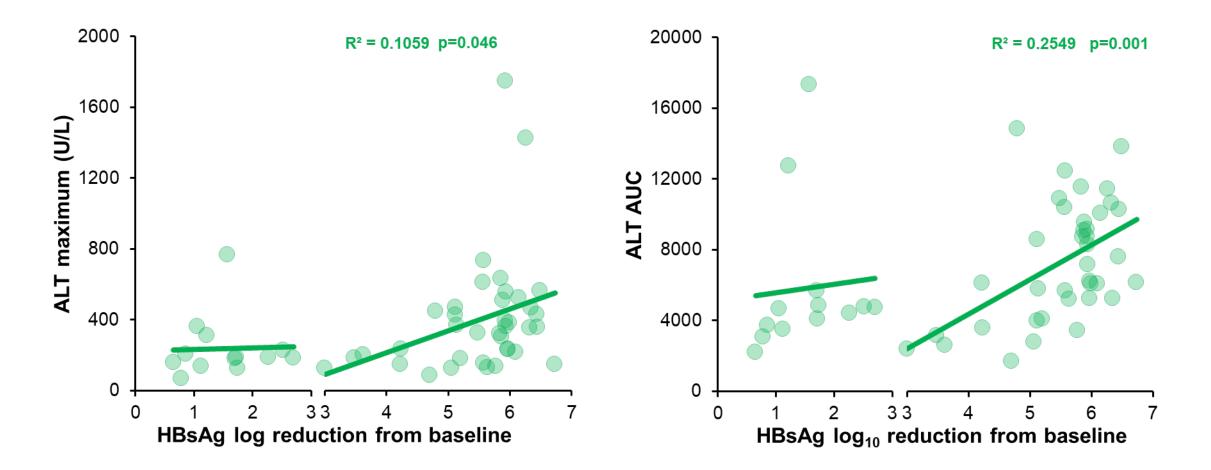
** HBsAg < 1 IU/ml during last 20 weeks of therapy



Achieving HBsAg 0.00 IU/mL during therapy is necessary but not sufficient to achieve functional cure

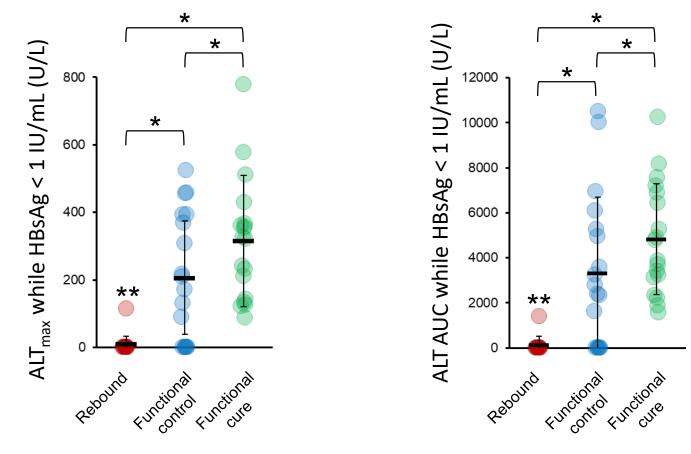
Meta analysis of HBeAg negative patients completing therapy in the REP 301 and REP 401 studies

ALT flares are prevalent during therapy leading to rebound, functional control or functional cure



* Statistically significant with p< 0.05

Meta analysis of HBeAg negative patients completing therapy in the REP 301 and REP 401 studies


Increased ALT flare activity is correlated with HBsAg reductions \geq 3 log₁₀ from baseline

Meta analysis of HBeAg negative patients completing therapy in the REP 301 and REP 401 studies

ALT flare activity while HBsAg < 1 IU/mL is correlated with virologic outcome

Statistically significant with p< 0.05
** HBsAg < 1 IU/ml during last 20 weeks of therapy

Summary

Addition of NAPs to TDF + pegIFN dramatically improves outcomes off therapy

- Liver function normal in 91% of participants
- Reversal of inflammation / fibrosis
- Establishment of functional control / functional cure of chronic HBV infection in 83% of participants

Extent of ALT flare activity while HBsAg is < 1 IU/mL predicts outcomes after therapy

- No flare activity with HBsAg < 1 IU/mL = rebound
- Increased flare activity while HBsAg is < 1 IU/mL is correlated with better likelihood of achieving functional cure
- Restoration of HBsAg specific immune function during therapy (T-cell mediated?) may drive establishment of clinical benefit persisting after therapy

REP 2139-Mg transition to SC with TDF + pegIFN is expected to <u>further improve HBsAg response</u> and have similar or better outcomes against HBV / HDV co-infection (to be assessed in upcoming REP 501 trial).

IV Phase IIA US study (A5382) will confirm optimal REP 2139-Mg dose to allow early entry into a phase IIB pivotal study with SC administration.

A collaborative effort !

Clinical evaluations:	Montreal, Canada Michel Bazinet	Dhaka, Bangladesh Mamun Al-Mahtab	Chişinău, Victor Pântea Valentin Cebotarescu Lilia Cojuhari Pavlina Jimbei Gheorghe Placinta	Moldova Liviu Iarovoi Valentina Smesnoi Tatiana Musteata Iurie Moscalu Alina Jucov	US (ACTG) Marion Peters Shyam Kottilil Claudia Kawkins
Clinical virology and assay validation:	Essen, Germany Adalbert Krawczyk	Munich, Germany Michael Roggendorf Hadi Karimzadeh Hrvoje Mijočević Zainab Usman	Los Angeles, USA Peter Schmid Jeffrey Albrecht	Bobigny, France Emmanuel Gordien Frédéric Le Gal	Abbott Gavin Cloherty
Pre-clinical evaluations:	Adelaide, Australia Allison Jilbert Faseeha Noordeen Catherine Scougall	Lyon, France Lucyna Cova Celia Brikh Jonathan Quinet Catherine Jamard	Essen, Germany Michael Roggendorf Katrin Schöneweis Mengji Lu Pia Roppert Dieter Glebe	Logan, Utah, USA John Morrey Neil Motter	Reno, Nevada, USA Doug Kornbrust
Mechanistic studies:	Montreal, Canada Matthieu Blanchet Patrick Labonté Richard Boulon Léna Angelo	Paris, France Camille Sureau Frauke Beilstein Matthieu Lemasson	Essen, Germany Ruth Broering Catherine Real Joerg Schlaak	Ness Ziona, Israel Raphael Mayer Merav Merom Shamu Ronny Peri-Naor	ır

