Transaminase flares during HBsAg reduction to < 1 IU/mL are correlated with the establishment of functional cure of HBV following NAP-based combination therapy

M. Bazinet¹, V. Panteâ², G. Placinta², I. Moscalu³, V. Cebotarescu², L. Cojuhari², P. Jimbei⁴, L. Iarovoi², V. Smesnoi⁴, T. Musteata⁴, A. Jucov^{2,3}, A. Krawczyk^{5,6}, U. Dittmer⁵, A. Vaillant¹

Replicor Inc., Montreal, Canada
 Nicolae Testemiţanu State University of Medicine and Pharmacy, Chişinău, Moldova
 ARENSIA Exploratory Medicine Chişinău, Moldova
 Toma Ciorbă Infectious Clinical Hospital, Chişinău, Moldova
 Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
 Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

FRONTIERS IN DRUG DEVELOPMENT FOR HEPATOLOGY

KAUAI, HAWAII, USA • 8-12 DECEMBER 2019

AV and MB are employees and shareholders in Replicor Inc.

The NAP genus

All single stranded phosphorothioate oligonucleotides with sequence independent activity

Novel SAR driven by interaction with hydrophobic surfaces of amphipathic α -helices

Unique pharmacology validated *in vitro, in vivo* and in humans:

- length (> antisense) and phosphorothioation dependent
- independent of nucleotide sequence or base and sugar modifications

Broad spectrum anti-infective activity (all targets contain structurally conserved amphipathic α-helices)

- Infectious agent targets (all identified) HDV, HIV, all *herpesviridae*, RSV, PIV-3, influenza A and B, Ebola, Marburg, LCMV, malaria, prion disease
- Host target (not yet identified!) HCV – post entry fusion inhibitor

HBV – selective inhibition of SVP assembly and secretion (no effects on HBV DNA and HBeAg)

A retrospective analysis of transaminase elevations during combination therapy with NAPs and pegIFN

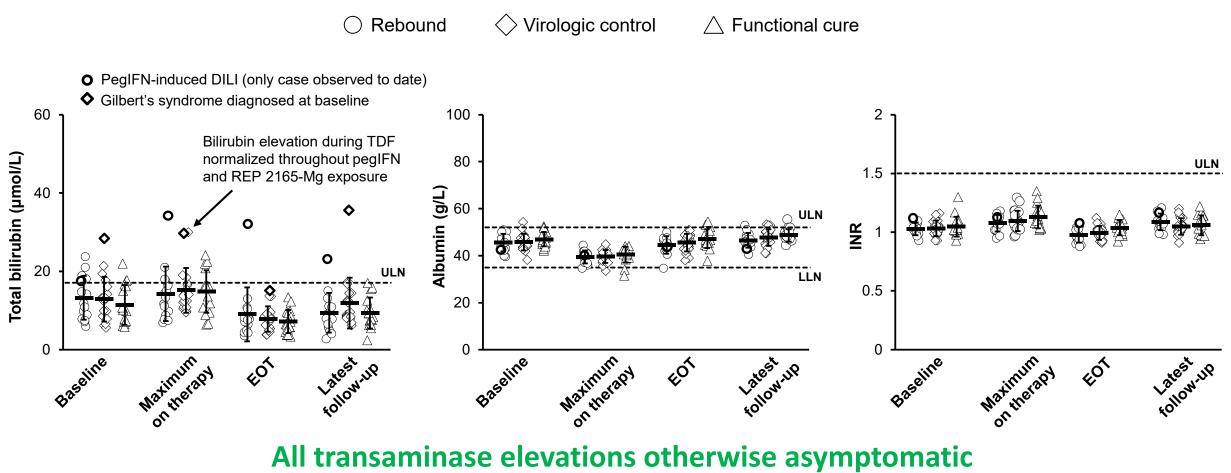
REP 301: REP 2139-Ca + peg IFN in chronic HBeAg- HBV / HDV co-infection n=12

Treatment naïve HDV RNA > 10000 copies / mL, HDAg+ HBeAg negative, anti-HBe positive HBsAg > 1000 IU/mL Negative for HCV, HIV or active CMV infection **3.5 years follow-up completed**

REP 401: REP 2139-Mg or REP 2165-Mg + pegIFN + TDF in HBeAg- chronic HBV infection **n=40**

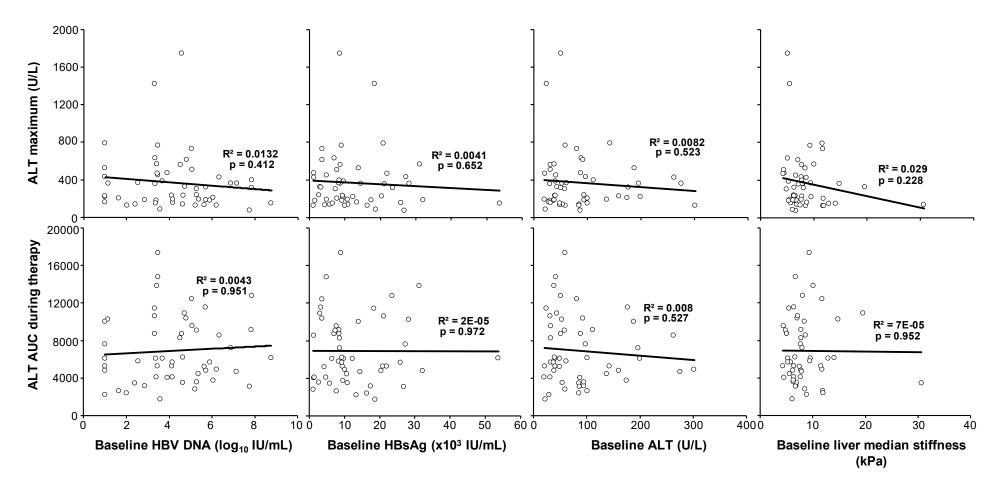
Treatment naïve HBV DNA > 2000 IU/mL HBeAg negative, anti-HBe positive HBsAg > 1000 IU/mL Negative for HDV, HCV, HIV or active CMV infection **48 weeks follow-up completed**

A retrospective analysis of transaminase elevations during combination therapy with NAPs and pegIFN

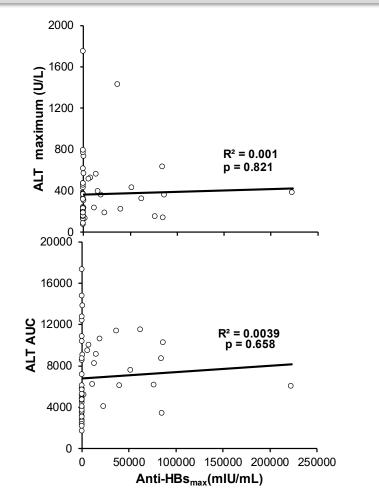

96% of participants experienced transaminase elevations during therapy

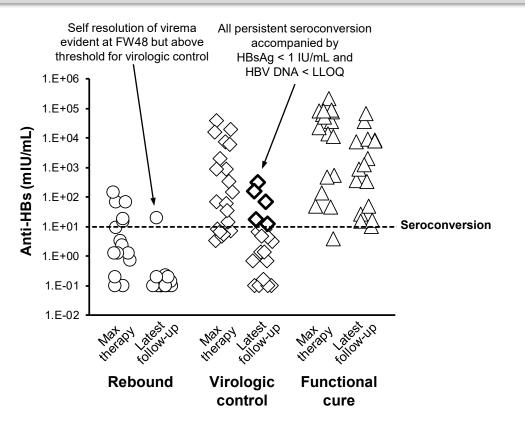
		Outcome during treatment free follow-up				
		Rebound (HBV DNA > 2000 IU/mL) (n=15)	Virologic control (HBV DNA ≤ 2000 IU/mL, normal ALT) (n=20)	Functional cure (HBV DNA TND, HBsAg < LLOQ, normal ALT) (n=17)	p-value	
Age (x̄ / median)		39.5 / 44	37.2 / 37	37.7 / 39	0.750	
Sex	Male Female	12 3	16 4	14 3	0.979	
HBV genotype	A D ND (HDV dominant)	1 10 4	1 14 5	0 14 3	0.922	
Baseline HBsAg (IU/mL, x̄ ± SD) Baseline HBV DNA (IU/mL, x̄ ± SD)		4^{4} 1.67x10 ⁴ ± 8.23x10 ³ 9.66x10 ⁶ ± 2.28x10 ⁷	1.12x10 ⁴ ± 7.03x10 ³ 3.73x10 ⁶ ± 1.57x10 ⁷	$3 \\ 1.13 \times 10^4 \pm 1.38 \times 10^3 \\ 3.46 \times 10^7 \pm 1.40 \times 10^8$	0.274 0.494	
Baseline transaminases	ALT AST	76.1 ± 69.2 46.5 ± 30.8	96.4 ± 72.4 57.0 ± 38.0	88.4 ± 66.0 51.9 ± 25.6	0.695 0.635	
(U/L, x ± SD) Baseline LMS (kPa)	GGT ≤7 7-9	31.4 ± 24.6 6	33.1 ± 16.4 10 5	39.6 ± 25.6 7	0.531	
	9 - 11 11 - 18	5 1 2	3	5 0 3	0.942	
Transaminase flare during therapy (> 3x ULN)	>18 ALT	0 11	0 16	2		
	AST	6	9	13	0.733	
	Any	11	17	17	0.248	

Therapeutic outcomes independent of baseline characteristics or overall flare activity


Transaminase flares are not accompanied by altered liver function

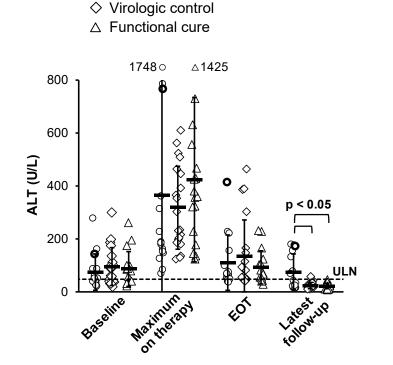
No evidence of autoimmune hepatitis throughout therapy (anti-ANA negative, anti-LKM1 negative)


Factors influencing transaminase elevations

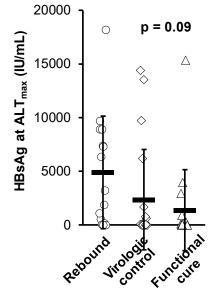


Transaminase elevations are independent of baseline characteristics

Factors influencing transaminase elevations



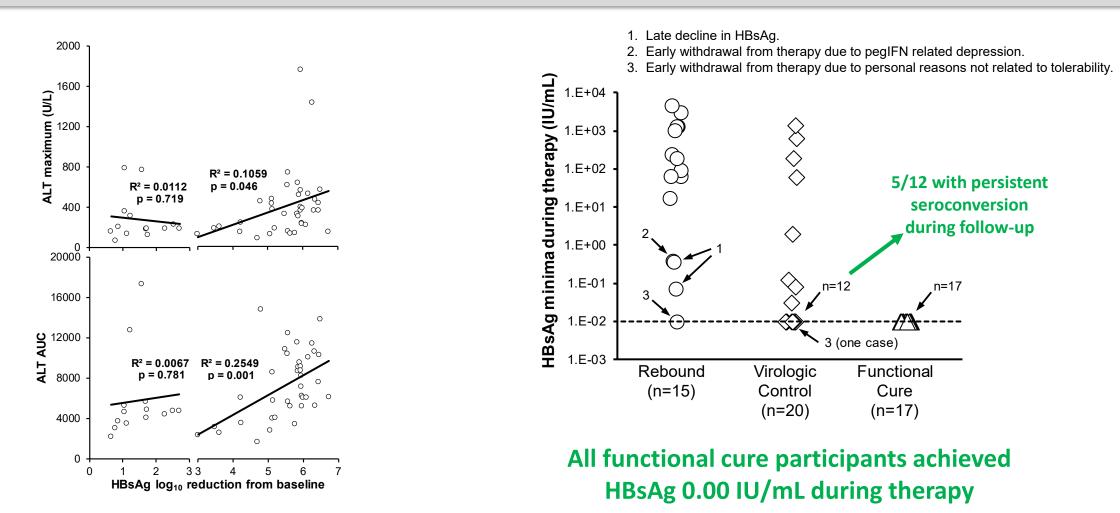
Transaminase elevations are independent of anti-HBs evolution during therapy HBsAg seroconversion during therapy is correlated with clinical benefit Only persists during follow-up with functional cure or "strong" virologic control


Effect of HBsAg response on transaminase flare activity

• DILI participant

○ Rebound

2000 1600 (1)(1



No significant difference in transaminase elevations during therapy between different therapeutic outcome groups

Maximum transaminase elevation not correlated with HBsAg clearance overall HBsAg clearance better at transaminase maxima in virologic control and functional cure groups

Effect of HBsAg response on transaminase flare activity

Intensity and duration of transaminase elevation is correlated with HBsAg decline > 3 log₁₀ from baseline

Predicting virologic outcomes

Analysis of HBeAg negative patients completing therapy in the REP 301 and REP 401 studies

Transaminasa algustian	Incidence (%) in different therapeutic outcome groups			
Transaminase elevation	Rebound	Virologic control	Functional cure	p-value
during HBsAg reduction	(n=15)	(n=20)	(n=17)	
< 1000 IU/mL	73	95	100	0.194
< 100 IU/mL	47	85	100	0.066
< 10 IU/mL	27	80	100	0.001
< 1 IU/mL	20*	70	100	< 0.001

*all withdrew early from therapy or had late HBsAg decline during therapy

All functional cure participants experienced transaminase elevation while HBsAg was < 1IU/mL

Predicting therapeutic outcomes

Milestone during therapy		PPV	NPV	Sensitivity	Specificity	
	No functional cure (R + VC) vs functional cure					
	< 1 IU/mL	50	100	100	51	
	< 10 IU/mL	46	100	100	43	
Transaminase	< 100 IU/mL	41	100	100	31	
	< 1000 IU/mL	36	100	100	14	
elevation during	No clinical benefit (R) vs clinical benefit (VC + FC)					
HBsAg clearance	< 1 IU/mL	84	80	91	66	
	< 10 IU/mL	89	73	89	73	
	< 100 IU/mL	92	53	83	72	
	< 1000 IU/mL	97	27	77	80	
HBsAg < LLOQ		No functional cure (R + VC) vs functional cure				
		59	100	100	66	
		No clinical benefit (R) vs clinical benefit (VC + FC)				
		100	65	78	100	
HBsAg seroconversion (> 10 mIU/mL)		No functional cure (R + VC) vs functional cure				
		44	94	94	43	
		No clinical benefit (R) vs clinical benefit (VC + FC)				
		86	62	84	67	

Summary

Transaminase flares are common during combination therapy with NAPs and pegIFN:

- Independent of baseline characteristics or therapeutic outcome
- Not accompanied by alteration in liver function and are otherwise asymptomatic
- Cumulative flare activity during therapy is correlated with HBsAg reduction > 3 log₁₀ from baseline

All participants with HBV functional cure experience HBsAg 0.00 IU/mL and transaminase elevation while HBsAg is < 1 IU/mL during therapy – also associated with functional cure of HDV. Both these milestones appear to be required to achieve functional cure.

The presence of transaminase flares while HBsAg is < 1 or < 10 IU/mL predict clinical benefit after therapy (virologic control or functional cure). Flare activity during higher HBsAg thresholds (> 10 IU/mL) has relatively poor predictive value

HBsAg specific immune function likely plays an important role in establishing virologic control and functional cure.

A collaborative effort !

Clinical evaluations:	Montreal, Canada Michel Bazinet	Dhaka, Bangladesh Mamun Al-Mahtab	Chişinău, Victor Pântea Valentin Cebotarescu Lilia Cojuhari Pavlina Jimbei Gheorghe Placinta	Moldova Liviu Iarovoi Valentina Smesnoi Tatiana Musteata Iurie Moscalu Alina Jucov	US (ACTG) Marion Peters Shyam Kottilil Claudia Kawkins
Clinical virology and assay validation:	Essen, Germany Adalbert Krawczyk	Munich, Germany Michael Roggendorf Hadi Karimzadeh Hrvoje Mijočević Zainab Usman	Los Angeles, USA Peter Schmid Jeffrey Albrecht	Bobigny, France Emmanuel Gordien Frédéric Le Gal	Abbott Gavin Cloherty Mark Anderson
Pre-clinical evaluations:	Adelaide, Australia Allison Jilbert Faseeha Noordeen Catherine Scougall	Lyon, France Lucyna Cova Celia Brikh Jonathan Quinet Catherine Jamard	Essen, Germany Michael Roggendorf Katrin Schöneweis Mengji Lu Pia Roppert Dieter Glebe	Logan, USA John Morrey Neil Motter	Reno, USA Doug Kornbrust
Mechanistic studies:	Montreal, Canada Matthieu Blanchet Patrick Labonté Richard Boulon Léna Angelo	Paris, France Camille Sureau Frauke Beilstein Matthieu Lemasson	Essen, Germany Ruth Broering Catherine Real Joerg Schlaak	Ness Ziona, Israel Raphael Mayer Merav Merom Shamu Ronny Peri-Naor	Chicago, USA Harel Dahari Ir

